ペプトイド力場における溶媒分極の影響(Accounting for Solvent Polarization Improves Conformational Predictions in a Peptoid Force Field)

ad

2025-09-12 パシフィック・ノースウェスト国立研究所(PNNL)

太平洋北西国立研究所(PNNL)の研究チームは、分子シミュレーションにおいて「溶媒の分極効果」を考慮することで、ペプトイド(タンパク質に似た合成分子)の立体構造予測精度を大幅に向上できることを示した。従来の力場モデルは、分子が溶液中でどのように相互作用するかを十分に反映できず、安定した構造を再現するのが困難だった。今回の研究では、溶媒分極を取り入れた新しいモデルを適用することで、実験データに近い分子挙動を再現できるようになった。この進展は、創薬分野における新規医薬品の分子設計や、バイオ由来の機能性材料の開発を加速する可能性があると期待されている。

ペプトイド力場における溶媒分極の影響(Accounting for Solvent Polarization Improves Conformational Predictions in a Peptoid Force Field)
Electrostatic potential mapped on the van der Waals surface of the R57 peptoid monomer in acetonitrile, highlighting the solvent-dependent charge distribution used in STEPs-SOL.
(Image by Marcel Baer | Pacific Northwest National Laboratory)

<関連情報>

溶媒効果を考慮したペプトイド力場パラメータ化:STEPs-SOL STEPs-SOL, a Peptoid Force Field Parameterization to Include Solvent Effects

Yasmene W. Elhady,Bradley S. Harris,Christopher J. Mundy,and Marcel D. Baer
The Journal of Physical Chemistry B  Published: June 3, 2025
DOI:https://doi.org/10.1021/acs.jpcb.5c02834

Abstract

As peptoids (N-substituted glycines) continue to gain popularity as a class of biomimetic polymers, the importance and demand for accurate force fields in molecular simulations also grow. Building on the vacuum-optimized Systematic and Extensible Force Field for Peptoids (STEPs) force field, here we present STEPs-SOL, a novel peptoid force field parametrization that effectively incorporates solvent effects to enhance the accuracy of peptoid simulations. The development of STEPs-SOL is based on the need for precise electrostatic modeling achieved through solvent-specific partial charge optimization. Our systematic approach significantly improves agreement with experimental measurements, reducing the mean absolute error in cis/trans ratio predictions (ΔGc/t) by an average of 38% across multiple peptoid residues and solvent environments. This improved parametrization addresses computational challenges associated with nonbonded energies while maintaining a workflow that relies on high-level quantum mechanical data rather than depending solely on limited experimental equilibrium properties. By evaluating the effects of conformational bias in restrained electrostatic potential (RESP) charge generation and examining their impact on peptoid conformations in various solvents, we enhance our understanding of peptoid structural dynamics while providing a more accurate modeling framework.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました