脳卒中回復支援のためのロボティクスブレークスルー(The Robotic Breakthrough That Could Help Stroke Survivors Reclaim Their Stride)

ad

2025-09-18 ジョージア工科大学

ジョージア工科大学の研究チームは、AI搭載型外骨格ロボットを開発し、脳卒中後の歩行リハビリに大きな進展をもたらした。従来の外骨格は手動調整が必要で使用者に適合しにくかったが、新システムは神経ネットワークを用いて歩行リズムをリアルタイム学習し、わずか1〜2分で個人の歩行パターンに適応する。テストでは従来型より70%精度が高く、患者の疲労を軽減し自信回復にも寄与した。また異なる外骨格機器間でも「普遍的アダプター」のように機能し、短時間の校正でエラー率を75%削減できる。成果はIEEE Transactions on Roboticsに発表され、脳卒中患者だけでなく高齢者やパーキンソン病患者など幅広い層の歩行支援に応用可能性がある。

脳卒中回復支援のためのロボティクスブレークスルー(The Robotic Breakthrough That Could Help Stroke Survivors Reclaim Their Stride)
Georgia Tech’s AI-fueled exoskeleton adapts to every step, helping patients relearn to walk with less effort and more confidence.

<関連情報>

オンライン適応フレームワークにより、脳卒中患者の歩行中の外骨格支援の個別化が可能に Online Adaptation Framework Enables Personalization of Exoskeleton Assistance During Locomotion in Patients Affected by Stroke

Inseung Kang; Dean D. Molinaro; Dongho Park; Dawit Lee; Pratik Kunapuli; Kinsey R. Herrin,…
IEEE Transactions on Robotics  Published:04 August 2025
DOI:https://doi.org/10.1109/TRO.2025.3595701

Abstract:

Robotic exoskeletons can transform mobility for individuals with lower limb disabilities. However, their widespread adoption is limited by controller degradation caused by varying gait dynamics across different users and environments. Here, we propose an online adaptation framework that leverages real-time data streams to continuously update the user state estimator model. This approach allows the exoskeleton to learn the user-specific gait patterns, effectively customizing the model for each new user. In addition, we demonstrate a sensor signal transformation technique that enables model transfer across different exoskeleton hardware (from a research-grade exoskeleton to a commercial device). With less than one minute of adaptation, our framework improved gait phase estimation, which directly affects assistance timing, by 40.9% for able-bodied subjects and 65.9% for stroke survivors (p < 0.05), and reduced torque profile error by 32.7% compared to the baseline model (p < 0.05). Furthermore, in a pilot test, we applied our adaptation framework with human-in-the-loop optimization for control tuning. In a single stroke survivor, this approach led to a 21.8% increase in walking speed and a 6.5% reduction in metabolic cost compared to walking without exoskeleton. While preliminary, these results suggest the potential for personalized exoskeleton assistance in clinical populations.

 

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました