老化で神経細胞は“落ち着き”を失う?~遺伝子発現の“土台”の変化が脳の機能低下につながる可能性~

ad

2025-10-02 東京大学

東京大学定量生命科学研究所のメルべ・ビルギーチ助教と岸雄介准教授の研究チームは、マウス海馬を用いたシングルセルマルチオーム解析により、老化に伴う神経細胞(ニューロン)の遺伝子発現とエピゲノム変化を同時に解析した。その結果、老化したニューロンでは、本来は脳発達期や刺激応答時に働く遺伝子が常時活性化しやすい状態にあり、過敏な応答や神経回路の維持不全を招く可能性が示された。さらに、転写抑制因子Bach2が老化によって減少し、遺伝子活性化の“ブレーキ”が外れることが原因の一端であることも明らかにした。この成果は、脳の老化や加齢性神経疾患の根本的理解に貢献する。

老化で神経細胞は“落ち着き”を失う?~遺伝子発現の“土台”の変化が脳の機能低下につながる可能性~

老化したニューロンのクロマチン(右側)は若いとき(左側)よりオープンになる(開花する)

<関連情報>

マウス海馬における加齢に伴うトランスクリプトームおよびエピジェネティックな変化 Age-Associated Transcriptomic and Epigenetic Alterations in Mouse Hippocampus

Merve Bilgic, Rinka Obata, Vlada-Iuliana Panfil, Ziying Zhu, Mai Saeki, Yukiko Gotoh, Yusuke Kishi
Aging Cell  Published: 28 September 2025
DOI:https://doi.org/10.1111/acel.70233

ABSTRACT

Aging represents a major risk for human neurodegenerative disorders, such as dementia and Alzheimer’s disease, and is associated with a functional decline in neurons and impaired synaptic plasticity, leading to a gradual decline in memory. Previous research has identified molecular and functional changes associated with aging through transcriptomic studies and neuronal excitability measurements, while the role of chromatin-level regulation in vulnerability to aging-related diseases is not well understood. Moreover, the causal relationship between molecular alterations and aging-associated decline in functions of different cell types remains poorly understood. Here, we systematically characterized gene regulatory networks in a cell type-specific manner in the aging mouse hippocampus, a central brain region involved in learning and memory formation, by simultaneously profiling gene expression and chromatin accessibility at a single-nucleus level. The analysis of multiome (RNA and ATAC) sequencing recapitulated the diversity of glial and neuronal cell types in the hippocampus and revealed transcriptomic and chromatin accessibility level changes in different cell types, among which oligodendrocytes and dentate gyrus (DG) neurons exhibited the most drastic changes. We found pronounced aging-dependent chromatin-level changes among neurons, especially for genes related to synaptic plasticity. Our data suggest that BACH2, a candidate transcription factor implicated in aging-mediated functional decline of DG neurons, potentially regulates genes associated with synaptic plasticity, cell death, and inflammation during aging. Taken together, our single-nucleus multiome analysis reveals potential cell type-specific regulators involved in the aging of neurons and glial cells.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました