超高速プローブとAIが創薬を可能にする(Ultrafast probing and AI-enabled drug discovery)

ad

2024-09-20 インペリアル・カレッジ・ロンドン(ICL)

研究者は、新薬発見の効率を大幅に向上させる無料のAIアルゴリズム「DrugSynthMC」を開発しました。このオープンソースソフトウェアは、任意の標的分子に適応し、わずか0.75秒で10,000種類の仮想薬分子を生成してスクリーニングできます。製薬会社や大学の研究者がすぐに利用可能で、既存の複雑なアルゴリズムよりも効率的であり、AI主導の薬剤開発において非常に有用になると期待されています。

<関連情報>

DrugSynthMC:モンテカルロ探索による原子ベースの薬物類似分子生成 DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search

Milo Roucairol,Alexios Georgiou,Tristan Cazenave,Filippo Prischi,Olivier E. Pardo
Journal of Chemical Information and Modeling  Published: September 9, 2024
DOI:https://doi.org/10.1021/acs.jcim.4c01451

Abstract

 

超高速プローブとAIが創薬を可能にする(Ultrafast probing and AI-enabled drug discovery)

A growing number of deep learning (DL) methodologies have recently been developed to design novel compounds and expand the chemical space within virtual libraries. Most of these neural network approaches design molecules to specifically bind a target based on its structural information and/or knowledge of previously identified binders. Fewer attempts have been made to develop approaches for de novo design of virtual libraries, as synthesizability of generated molecules remains a challenge. In this work, we developed a new Monte Carlo Search (MCS) algorithm, DrugSynthMC (Drug Synthesis using Monte Carlo), in conjunction with DL and statistical-based priors to generate thousands of interpretable chemical structures and novel drug-like molecules per second. DrugSynthMC produces drug-like compounds using an atom-based search model that builds molecules as SMILES, character by character. Designed molecules follow Lipinski’s “rule of 5″, show a high proportion of highly water-soluble nontoxic predicted-to-be synthesizable compounds, and efficiently expand the chemical space within the libraries, without reliance on training data sets, synthesizability metrics, or enforcing during SMILES generation. Our approach can function with or without an underlying neural network and is thus easily explainable and versatile. This ease in drug-like molecule generation allows for future integration of score functions aimed at different target- or job-oriented goals. Thus, DrugSynthMC is expected to enable the functional assessment of large compound libraries covering an extensive novel chemical space, overcoming the limitations of existing drug collections. The software is available at https://github.com/RoucairolMilo/DrugSynthMC.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました