電気化学的場が認知症の前駆体形成に与える影響を解明(Electrochemical Field Key to How Dementia Precursors ‘Break Bad’)

ad

2025-02-26 ワシントン大学セントルイス校 (WashU)

ワシントン大学セントルイス校の研究チームは、アミロイドβペプチドの集合体が神経変性疾患を引き起こすメカニズムを解明しました。彼らは、これらのペプチドの物理的な界面が電場を形成し、水分子を酸化して高反応性の酸素種を生成することを発見しました。この酸素種は細胞にストレスを与え、アミロイドβペプチドの毒性を高めるフィードバックループを形成します。さらに、研究者たちは、この有害なプロセスを中断させる可能性のある小分子を特定しました。これらの分子は、ヒドロキシルラジカルを除去したり、ペプチドの界面を変化させたりすることで、毒性の連鎖を阻止します。この研究成果は、Journal of the American Chemical Society誌に掲載され、アルツハイマー病や筋萎縮性側索硬化症(ALS)などの神経変性疾患の新たな治療法開発に貢献すると期待されています。

<関連情報>

Aβ集合体による活性酸素種の遷移状態依存的自発的生成は、凝集体形成のための自己制御型ポジティブフィードバックループをコードする Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation

Michael W. Chen,Xiaokang Ren,Xiaowei Song,Naixin Qian,Yuefeng Ma,Wen Yu,Leshan Yang,Wei Min,Richard N. Zare,and Yifan Dai
Journal of the American Chemical Society  Published: February 25, 2025
DOI:https://doi.org/10.1021/jacs.4c15532

Abstract

電気化学的場が認知症の前駆体形成に与える影響を解明(Electrochemical Field Key to How Dementia Precursors ‘Break Bad’)

Amyloid-β (Aβ) peptides exhibit distinct biological activities across multiple physical length scales, including monomers, oligomers, and fibrils. The transition from Aβ monomers to pathological aggregates correlates with the emergence of chemical toxicity, which plays a critical role in the progression of neurodegenerative disorders. However, the relationship between the physical state of Aβ assemblies and their chemical toxicity remains poorly understood. Here, we show that Aβ assemblies can spontaneously generate reactive oxygen species (ROS) through transition-state-specific inherent nonenzymatic redox activity. During the transition from initial monomers to intermediate oligomers or condensates to final fibrils, interfacial electrochemical environments emerge and vary at the liquid–liquid and liquid–solid interfaces. Determined by the vibrational Stark effect using electronic pre-resonance stimulated Raman scattering microscopy, the interfacial field of such assemblies is on the order of 10 MV/cm. Interfacial activity, which depends on the Aβ transition state, can modulate the spontaneous oxidation of hydroxide anions, which leads to the formation of hydroxyl radicals. Interestingly, this redox activity modifies the chemical composition of Aβ and establishes a self-regulated positive feedback loop that accelerates aggregation and promotes fibril formation, which represents a new functioning mechanism of Aβ aggregation beyond physical cross-linking. Leveraging this mechanistic insight, we identified small molecules capable of disrupting the feedback loop by scavenging hydroxyl radicals or perturbing the interface, thereby inhibiting fibril formation. Our findings provide a nonenzymatic model of neurotoxicity and reveal the critical role of physical interfaces in modulating the chemical dynamics of biomolecular assemblies. These results offer a novel framework for therapeutic intervention in Alzheimer’s disease and related neurodegenerative disorders.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました