全ゲノム重複が長期的な適応進化を促進する仕組みを発見(Scientists uncover key mechanism in evolution: Whole-genome duplication drives long-term adaptation)

ad

2025-03-26 ジョージア工科大学

ジョージア工科大学の研究チームは、**全ゲノム重複(WGD)**が進化における長期的な適応を促進する重要なメカニズムであることを明らかにしました。彼らは「スノーフレーク酵母」を用いた長期多細胞性進化実験(MuLTEE)を行い、酵母が実験開始から50日以内にゲノムを倍加させ、テトラプロイド化(4倍体化)したことを発見しました。このテトラプロイド状態は1,000日以上維持され、通常の実験室環境で見られる不安定性とは対照的でした。さらに、WGDを経験した酵母は細胞サイズの増加や新しい形質の獲得など、多細胞性の進化に有利な特性を示しました。この研究は、WGDが進化的イノベーションを促進し、生物の適応能力を向上させる可能性を示唆しています。

<関連情報>

長期多細胞進化実験におけるゲノム重複 Genome duplication in a long-term multicellularity evolution experiment

Kai Tong,Sayantan Datta,Vivian Cheng,Daniella J. Haas,Saranya Gourisetti,Harley L. Yopp,Thomas C. Day,Dung T. Lac,Ahmad S. Khalil,Peter L. Conlin,G. Ozan Bozdag & William C. Ratcliff
Nature  Published:05 March 2025
DOI:https://doi.org/10.1038/s41586-025-08689-6

全ゲノム重複が長期的な適応進化を促進する仕組みを発見(Scientists uncover key mechanism in evolution: Whole-genome duplication drives long-term adaptation)

Abstract

Whole-genome duplication (WGD) is widespread across eukaryotes and can promote adaptive evolution. However, given the instability of newly formed polyploid genomes, understanding how WGDs arise in a population, persist, and underpin adaptations remains a challenge. Here, using our ongoing Multicellularity Long Term Evolution Experiment (MuLTEE), we show that diploid snowflake yeast (Saccharomyces cerevisiae) under selection for larger multicellular size rapidly evolve to be tetraploid. From their origin within the first 50 days of the experiment, tetraploids persisted for the next 950 days (nearly 5,000 generations, the current leading edge of our experiment) in 10 replicate populations, despite being genomically unstable. Using synthetic reconstruction, biophysical modelling and counter-selection, we found that tetraploidy evolved because it confers immediate fitness benefits under this selection, by producing larger, longer cells that yield larger clusters. The same selective benefit also maintained tetraploidy over long evolutionary timescales, inhibiting the reversion to diploidy that is typically seen in laboratory evolution experiments. Once established, tetraploidy facilitated novel genetic routes for adaptation, having a key role in the evolution of macroscopic multicellular size via the origin of evolutionarily conserved aneuploidy. These results provide unique empirical insights into the evolutionary dynamics and impacts of WGD, showing how it can initially arise due to its immediate adaptive benefits, be maintained by selection and fuel long-term innovations by creating additional dimensions of heritable genetic variation.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました