昆虫由来タンパク質が細菌感染を防止、医療用インプラントへの応用に期待(Insect protein blocks bacterial infection)

ad

2025-06-03 ロイヤルメルボルン工科大学(RMIT)

昆虫由来タンパク質が細菌感染を防止、医療用インプラントへの応用に期待(Insect protein blocks bacterial infection)
The antibacterial surface magnified 4,000 times under scanning electron microscope, showing the topographical feature of the coacervate resilin mimetic coating on the base scaffold substrate.

オーストラリアのRMIT大学の研究チームは、昆虫由来のタンパク質「レジリン」に着想を得た抗菌コーティングを開発しました。このコーティングは、医療用インプラントの表面における細菌の付着を完全に防ぐことが確認され、特に抗生物質耐性菌(例:MRSA)への対策として期待されています。レジリンは高い弾性と生体適合性を持つことで知られ、研究ではその模倣タンパク質をナノスケールの「コアセルベート」状態に加工。これが細菌の細胞膜と静電的に相互作用し、膜を破壊して細胞死を誘導します。一方で、ヒトの皮膚細胞とは良好に共存できることも確認されました。この技術は、手術器具やカテーテル、創傷ドレッシングなどへの応用が見込まれ、抗生物質に頼らない感染予防策として注目されています。今後は、他の抗菌ペプチドとの組み合わせや量産化に向けた研究が進められる予定です。

<関連情報>

組換えレジリンを用いたナノ構造抗バイオフィルム・コーティング Nano-structured antibiofilm coatings based on recombinant resilin

Nisal Wanasingha, Rajkamal Balu, Sheeana Gangadoo, Amanda N. Abraham, Agata Rekas, Jitendra P. Mata, Anton P. Le Brun, Naba K. Dutta, Namita Roy Choudhury
Advances in Colloid and Interface Science  Available online: 28 April 2025
DOI:https://doi.org/10.1016/j.cis.2025.103530

Abstract

The applications of responsive biomaterials for tuning cell-surface interactions have been recently explored due to their unique switchable characteristics. However, rational design of surfaces using suitable biomacromolecules to attain optimal physicochemical performance, biocompatibility, cell adhesion and anti-fouling properties is quite challenging. Resilin-mimetic polypeptides (RMPs) are intrinsically disordered biomacromolecules that exhibit multi-stimuli responsive behaviour, including reversible dual-phase thermal behaviour forming self-assembled nano- to microstructures. However, there is a limited understanding of the effect of morphological features of RMP-based nanostructures, and their influence on surface properties. Therefore, in this study, a family of responsive RMP-based nanostructured coatings (nano-coacervates, nanogels and nano-bioconjugates) are fabricated to investigate their various surface properties that influence cell-surface interactions. The effects of their physicochemical properties, such as conformation, packing density, charge, roughness, and stiffness, are investigated using atomic force microscopy, neutron scattering and reflectometry techniques. Biocompatibility and microbiological testing show that these nanostructured switchable responsive coatings can be applied to a wide range of substrates to modulate biofilm formation and attribute antimicrobial characteristics. The developed nanocoatings have the potential to find applications in many areas, including implantable medical devices, and drug delivery.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました