細胞が成長時に空間を割り当てる仕組みを可視化(Uncovering How Cells Allocate Space to Make Way for New Growth)

ad

2025-06-06 ワシントン大学セントルイス校

ワシントン大学セントルイス校の研究チームは、酵母細胞を用いて細胞成長時に細胞小器官(オルガネラ)がどのように空間を配分するかを解析しました。6つの主要オルガネラを染色し、ハイパースペクトルイメージング技術で同時に可視化。細胞サイズや成長速度の変化に応じて、オルガネラが異なる成長パターンを示すことを発見しました。特に液胞は成長のばらつきを吸収する役割を持ち、細胞内のスペース調整に重要とされます。これにより、細胞が複数の環境シグナルを統合的に処理して成長を最適化している可能性が示されました。この手法は、ヒト細胞や疾患研究にも応用が期待されます。

<関連情報>

システムレベルの細胞小器官の生合成と細胞の成長を調整する原理の解明 Uncovering the principles coordinating systems-level organelle biogenesis with cellular growth

Shixing Wang ∙ Deepthi Kailash ∙ Shankar Mukherji
Cell System  Published:June 6, 2025
DOI:https://doi.org/10.1016/j.cels.2025.101267

細胞が成長時に空間を割り当てる仕組みを可視化(Uncovering How Cells Allocate Space to Make Way for New Growth)

Highlights

  • Rainbow yeast allows simultaneous visualization of 6 major organelles in single cells
  • Systems-level organelle modes organize cellular response to nutrient availability
  • Cell size and growth rate, relayed by PKA and TOR signaling, structure organelle modes
  • Vacuole plays a central role in producing robust yet responsive cellular growth control

Summary

A complete framework of eukaryotic cellular growth control must include the growth of its defining hallmarks: organelles. Organelle coordination with cellular growth is opaque without measuring multiple organelles in the same cell with adequate statistics to test theoretical frameworks. Here, we map out the correlation structure of systems-level organelle biogenesis with cellular growth using “rainbow yeast,” simultaneously visualizing 6 major metabolically active organelles. Hyperspectral imaging of thousands of rainbow yeast cells revealed that systems-level organelle biogenesis is organized into collective organelle modes activated by changes in nutrient availability. Chemical biological dissection suggests that sensed growth rate and cell size specifically activate these organelle modes. Mathematical modeling and synthetic control of cytoplasmic availability suggest that the organelle mode structure allows growth homeostasis in constant environments and responsiveness to environmental change. This regulatory architecture may underlie how compartmentalization allows cell size and growth rate flexibility to satisfy otherwise incompatible environmental and developmental constraints.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました