2025-08-20 理化学研究所

図1 ATP合成酵素とF1-ATPaseの構造、およびサブステップ回転の模式図
(A)ATP合成酵素は、ミトコンドリア内膜(真核生物)や細胞膜(細菌)などの生体膜に存在する酵素複合体である。膜を貫通するFo部分と、膜の外側に露出した可溶性のF1部分から構成され、F1がATP合成を担う。
(B)F1-ATPaseは、それぞれ三つのαサブユニットとβサブユニットが交互に配置された六量体(α3β3)と、その中央に位置する回転子γサブユニットから成り、これらで回転機能の最小単位を構成する。ATPの加水分解に伴い、γサブユニットは固定子であるα3β3複合体に対して反時計回りに回転する。
(C)好熱菌由来のF1-ATPaseは、γサブユニットが80度と40度のサブステップ回転で構成された120度のステップ回転を行う。80度サブステップには、ATP結合とアデノシン二リン酸(ADP)解離が関与し、40度サブステップにはATP加水分解と無機リン酸(Pi)解離が関与することが知られている。
<関連情報>
- https://www.riken.jp/press/2025/20250820_1/index.html
- https://www.pnas.org/doi/10.1073/pnas.2502642122
F1-ATPaseのγサブユニット回転における歪み–押しメカニズム The distortion–push mechanism for the γ subunit rotation in F1-ATPase
Masahiro Motohashi, Mao Oide, Chigusa Kobayashi, +2 , and Yuji Sugita
Proceedings of the National Academy of Sciences Published:August 12, 2025
DOI:https://doi.org/10.1073/pnas.2502642122
Significance
F1 -ATPase is a rotary molecular motor that forms part of the ATP synthase complex. The F1 -ATPase from thermophilic Bacillus PS3 rotates in 120° steps upon ATP hydrolysis, consisting of two substeps of 80° and 40°. In this study, we analyzed the rotation mechanism of the 80° substep using all-atom molecular dynamics (MD) simulations. Transition path sampling and free energy analysis suggest that this rotation is driven by distortion of the stator and a pushing force acting into the rotor. This “distortion–push” mechanism improves our understanding of the chemo-mechanical energy conversion in F1 -ATPase, providing detailed insight into how mechanical force is generated at the atomic level.
Abstract
F1-ATPase comprises the stator ring consisting of α3β3 subunits and the rotor γ subunit. The γ subunit rotation mechanism has been extensively investigated by biochemical analyses, structural studies, single-molecule measurements, and computational studies. Recent cryoelectron microscopy (cryo-EM) structures of F1-ATPase from the thermophilic bacterium Bacillus PS3 (TF1) provide us with further possibilities for a better understanding of the γ-rotation mechanisms. Using cryo-EM structures having the γ-rotation angles close to the binding dwell and catalytic dwell states, we investigate the relationships between the γ subunit rotation, conformational changes of the stator α3β3 subunits, and the nucleotide-binding and release. We performed targeted molecular dynamics (MD) simulations with external forces on the α3β3 subunits and observed 80° substep rotations of the γ subunit. Then, we optimized the most probable transition pathway through the mean-force string method simulations with 64 images. Finally, using umbrella sampling, we calculated the potential of mean forces along the minimum free energy pathway during the 80° substep rotation. Our MD simulations suggest that 80° substep rotation is divided into the first rotation, resting, and the second rotation. Notably, the first rotation is driven by the distortion of the stator α3β3 subunits, and the second rotation is induced mainly by direct β/γ subunit interactions. This model, which we call the distortion–push mechanism, is consistent with the residue-level experimental analysis on F1-ATPase and the atomic structures determined by X-ray crystallography and cryo-EM.


