酵母の合成能力を寿命延長で強化(Researchers Boost Biosynthetic Capacity in Yeast Through Extended Lifespan)

ad

2025-11-17 中国科学院(CAS)

中国科学院大連化学物理研究所(Dalian Institute of Chemical Physics, DICP)を率いるZhou Yongjin教授らの研究チームは、酵母(Saccharomyces cerevisiae)の細胞老化を制御し、バイオ合成能力を飛躍的に高める手法を開発した。具体的には、栄養感知シグナルの弱化、ミトファジー促進、タンパク質安定性・ゲノム安定化の4つの次元で細胞の寿命を延長し、さらに代謝経路を最適化することで、高生成量ジテルペンアルコール「Sclareol」の生産濃度を25.9 g/Lまで引き上げた。オミックス解析から、寿命延長により中心的代謝と耐ストレス性が改善し、後期成長段階でのバイオ生産性が向上したことが明らかとなった。しかも、この戦略はセスキテルペンやフェノール酸など他の化合物生産にも適用可能性が示され、微生物細胞工場の汎用的な“寿命工学”アプローチとして注目されている。
この成果はバイオ製造の効率化・持続可能化という観点から、微生物による高付加価値化学物質の商業生産を一歩前進させるものである。

<関連情報>

堅牢な酵母細胞工場に向けた経時的寿命のエンジニアリング Engineering chronological lifespan toward a robust yeast cell factory

Zulin Wu, Jiaoqi Gao, Ning Gao, +1 , and Yongjin J. Zhou
Proceedings of the National Academy of Sciences  Published:November 10, 2025
DOI:https://doi.org/10.1073/pnas.2515324122

Significance

It is challenging to associate the laboratory-scale shake-flask fermentation with industrial fed-batch production due to cell aging and the accumulation of toxic metabolites in long-term strain cultivation. Here, we comprehensively engineered cellular resistance and longevity to improve chemical production in yeast. This study established a clear connection between chronological lifespan and biosynthesis capacity for improving sclareol production, a precursor for Ambrox synthesis. Rather than classic metabolic engineering, this longevity engineering strategy could be applied in versatile microbial cell factories for sustainable and economical biomanufacturing.

Abstract

Metabolic rewiring helps to construct efficient microbial cell factories; however, these cells suffer from metabolic stress during long-term fed-batch fermentation. Thus, the construction of robust cells is vital for industrial application of microbial cell factories at the laboratory scale. Here, we systematically characterized longevity factors and pathways for biosynthesis of the diterpenoid sclareol and found that weakening nutrient-sensing pathways and enhancing mitophagy synergistically improved sclareol production by 70.3% (20.1 g/L with a yield of 0.046 g/g glucose). Further enhancing central metabolism improved sclareol production to 25.9 g/L with a yield of 0.051 g/g glucose, the highest production achieved in microbes. Omics data demonstrated that the extension of chronological lifespan by upregulating the expression of lifespan-related genes automatically remodeled the cellular metabolism and improved overall cellular robustness for efficient chemical biosynthesis. We also showed that our strategy significantly improved the biosynthesis of other products such as sesquiterpene β-elemene and phenolic acids. Therefore, this study may provide metabolic connections between cell aging and biosynthetic capacity.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました