AIが遺伝子変異だけでなく関連疾患も特定する新ツールを開発(New AI Tool Identifies Not Just Genetic Mutations, But the Diseases They May Cause)

ad

2025-12-15 マウントサイナイ医療システム(MSHS)

マウントサイナイ医科大学の研究チームは、新しいAIツールを開発し、遺伝子変異(ゲノム変異)だけでなく、その変異が引き起こす可能性のある疾患までも同時に予測できる技術を発表した。このAIは、単なる変異の検出を超えて、変異の病態関連性(疾患への寄与度)や臨床的な影響を予測する能力を持つ。従来のゲノム解析ツールが変異の有無を報告するのに対し、新ツールは大量のゲノムデータ、既知の病因データベース、臨床表現型データを統合し、機械学習モデルを用いて高精度に変異→疾患の関連性を推定する。これにより、希少疾患や複雑疾患における病因解明、個別化医療(精密医療)および診断支援への応用が期待される。研究チームは、このツールが臨床ゲノミクスの診断過程に組み込まれることで、医師の診断精度向上や患者への早期治療選択を支援すると述べている。

<関連情報>

表現型特異的モデルによる変異効果予測の有用性の拡大 Expanding the utility of variant effect predictions with phenotype-specific models

David Stein,Meltem Ece Kars,Baptiste Milisavljevic,Matthew Mort,Peter D. Stenson,Jean-Laurent Casanova,David N. Cooper,Bertrand Boisson,Peng Zhang,Avner Schlessinger & Yuval Itan
Nature Communications  Published:28 November 2025
DOI:https://doi.org/10.1038/s41467-025-66607-w

AIが遺伝子変異だけでなく関連疾患も特定する新ツールを開発(New AI Tool Identifies Not Just Genetic Mutations, But the Diseases They May Cause)

Abstract

Current methods for variant effect prediction do not differentiate between pathogenic variants resulting in different disease outcomes and are restricted in application due to a focus on variants with a single molecular consequence. We have developed Variant-to-Phenotype (V2P), a multi-task, multi-output machine learning model to predict variant pathogenicity conditioned on top-level Human Phenotype Ontology disease phenotypes (n = 23) for single nucleotide variants and insertions/deletions throughout the human genome. V2P leverages a unique approach for the modeling of variant effect that incorporates resultant disease phenotypes as output and during training to improve the quality of variant disease phenotype and effect predictions, simultaneously. We describe the architecture, training strategy, and biological features contributing to V2P’s output, revealing initial characteristics underlying the relationship between disease genotype and phenotype. Moreover, we demonstrate the benefit of incorporating disease phenotypes for variant effect predictions by comparing V2P with several variant effect predictors across various high-quality evaluation datasets from manually curated databases and functional assays. Finally, we examine how V2P’s predictions result in the successful identification of pathogenic variants in real and simulated patient sequencing data, outperforming other tested methods in initial comparisons. V2P offers a complete mapping of human genetic variants to disease-phenotypes, offering a uniquely conditioned set of variant effect characterizations.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました