ブルーチーズの魅力は悪臭だけではない(There’s more to blue cheese than just the stench)

ad

2024-06-18 バージニア工科大学(VirginiaTech)

バージニア工科大学の研究者は、ブルーチーズに含まれる有益な化合物を効率的に合成する新しい方法を発見しました。この方法は、有害な化学物質を使用せずに合成を行うもので、従来の方法よりも高い収率を実現します。研究は、抗菌剤として新たに利用できる自然発生化合物を大規模に合成することで、既存の抗菌耐性を回避する可能性を示しました。酵素を使用してロックフォルチンLを生成し、その化合物が広範な抗菌特性や抗癌効果を持つことが確認されました。この研究成果は、化学反応を迅速化する酵素の利用を基盤に、自然産物の合成に関する新たな知識を提供し、市場性を高めるものです。

<関連情報>

フラビン依存性モノオキシゲナーゼによるニトロンの生成機構 Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase

Sydney B. Johnson, Hao Li, Hannah Valentino, and Pablo Sobrado
Biochemistry Published:May 23, 2024
DOI:https://doi.org/10.1021/acs.biochem.3c00656

Abstract

OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a “cautious” flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme–substrate and enzyme–intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.

ad
有機化学・薬学
ad
ad


Follow
ad
タイトルとURLをコピーしました