チームワーク中の集中状態を示す神経の”指紋”を特定(On the Same Wavelength:Neural “Fingerprints” Indicate Deep Focus Flow States in Teams)

ad

2025-04-11 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学(Caltech)主導の新研究により、「チーム・フロー」と呼ばれる状態、すなわち複数人が共同で没頭状態に入る現象において、脳波パターンの類似性が重要な役割を果たすことが明らかになった。被験者が協力型ビデオゲームをプレイする間にEEG(脳波計測)で脳活動を記録。脳波データを多次元空間にマッピングしたところ、脳波パターンが似ている者同士ほどチーム・フローに入りやすい傾向が確認された。この研究は、将来的に宇宙ミッションなどで高パフォーマンスなチーム編成に応用できる可能性があるとされる。論文は『Nature Scientific Reports』に掲載。

<関連情報>

二者間社会的相互作用を解読するための階層的特性および状態モデル A hierarchical trait and state model for decoding dyadic social interactions

Qianying Wu,Shigeki Nakauchi,Mohammad Shehata & Shinsuke Shimojo
Scientific Reports  Published:03 April 2025
DOI:https://doi.org/10.1038/s41598-025-95916-9

チームワーク中の集中状態を示す神経の”指紋”を特定(On the Same Wavelength:Neural “Fingerprints” Indicate Deep Focus Flow States in Teams)

Abstract

Traits are patterns of brain signals and behaviors that are stable over time but differ across individuals, whereas states are phasic patterns that vary over time, are influenced by the environment, yet oscillate around the traits. The quality of a social interaction depends on the traits and states of the interacting agents. However, it remains unclear how to decipher both traits and states from the same set of brain signals. To explore the hidden neural traits and states in relation to the behavioral ones during social interactions, we developed a pipeline to extract latent dimensions of the brain from electroencephalogram (EEG) data collected during a team flow task. Our pipeline involved two stages of dimensionality reduction: non-negative matrix factorization (NMF), followed by linear discriminant analysis (LDA). This pipeline resulted in an interpretable, seven-dimensional EEG latent space that revealed a trait to state (trait-state) hierarchical structure, with macro-segregation capturing neural traits and micro-segregation capturing neural states. Out of the seven latent dimensions, we found three that significantly contributed to variations across individuals and task states. Using representational similarity analysis, we mapped the EEG latent space to a skill-cognition space, establishing a connection between hidden neural signatures and social interaction behaviors. Our method demonstrates the feasibility of representing both traits and states within a single model that correlates with changes in social behavior.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました