日常診療のX線画像から骨の密度を推定~AIで骨粗鬆症を早期発見、高齢社会の健康寿命延伸・医療負担軽減へ~

ad

2025-07-09 東京大学

東京大学の研究グループは、腰のX線画像を用いて腰椎と大腿骨の骨密度をAIで同時に推定する新たな「AI骨粗鬆症診断補助システム」を開発しました。従来の専用検査機器を必要とせず、日常的なX線検査から骨粗鬆症を早期発見できる点が特長です。骨粗鬆症は自覚症状が乏しく、未治療のまま骨折するケースが多いため、この技術により治療の早期開始が可能となり、高齢者の健康寿命延伸や医療負担軽減に貢献が期待されます。国際医学誌に掲載済み。

日常診療のX線画像から骨の密度を推定~AIで骨粗鬆症を早期発見、高齢社会の健康寿命延伸・医療負担軽減へ~
図 1:AI 骨粗鬆症診断補助システムの概要 1 枚の X 線画像データのみから腰椎および大腿骨近位部の骨密度推定値を演算する

<関連情報>

腰椎X線前後画像を用いた人工知能による腰椎・大腿骨BMD推定システムの開発 Development of Artificial Intelligence-Assisted Lumbar and Femoral BMD Estimation System Using Anteroposterior Lumbar X-Ray Images

Toru Moro, Noriko Yoshimura, Taku Saito, Hiroyuki Oka, Sigeyuki Muraki, Toshiko Iidaka, Takeyuki Tanaka, Kumiko Ono, Hisatoshi Ishikura, Naoya Wada, Kenichi Watanabe …
Journal of Orthopaedic Research  Published: 09 July 2025
DOI:https://doi.org/10.1002/jor.70000

ABSTRACT

The early detection and treatment of osteoporosis and prevention of fragility fractures are urgent societal issues. We developed an artificial intelligence-assisted diagnostic system that estimated not only lumbar bone mineral density but also femoral bone mineral density from anteroposterior lumbar X-ray images. We evaluated the performance of lumbar and femoral bone mineral density estimations and the osteoporosis classification accuracy of an artificial intelligence-assisted diagnostic system using lumbar X-ray images from a population-based cohort. The artificial neural network consisted of a deep neural network for estimating lumbar and femoral bone mineral density values and classifying lumbar X-ray images into osteoporosis categories. The deep neural network was built by training dual-energy X-ray absorptiometry-derived lumbar and femoral bone mineral density values as the ground truth of the training data and preprocessed X-ray images. Five-fold cross-validation was performed to evaluate the accuracy of the estimated BMD. A total of 1454 X-ray images from 1454 participants were analyzed using the artificial neural network. For the bone mineral density estimation performance, the mean absolute errors were 0.076 g/cm2 for the lumbar and 0.071 g/cm2 for the femur between dual-energy X-ray absorptiometry-derived and artificial intelligence-estimated bone mineral density values. The classification performances for the lumbar and femur of patients with osteopenia, in terms of sensitivity, were 86.4% and 80.4%, respectively, and the respective specificities were 84.1% and 76.3%.

Clinical Significance

The system was able to estimate the bone mineral density and classify the osteoporosis category of not only patients in clinics or hospitals but also of general inhabitants.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました