海洋細菌由来のテルペン合成酵素の機能を解明~原子レベルでの酵素機能を理解し機能の改変を実現~

ad

2025-08-08 理化学研究所

理化学研究所の研究チームは、海洋細菌 Aquimarina spongiae 由来のドリメノール合成酵素(AsDMS)のX線結晶構造を原子レベルで解明し、基質結合や触媒作用に関わるアミノ酸残基を特定しました。AsDMSはHADドメインとTCβドメインを併せ持ち、環化と脱リン酸化の連続反応でドリメノールを生成します。部位特異的変異により、ドリメノールとは異なるテルペノイド(アルビカノール)を生産する機能改変酵素の創出にも成功しました。これにより、テルペノイド生合成の分子機構と生成物の作り分けに必要なアミノ酸残基が明らかになり、多様な有用テルペノイドの酵素的生産への応用が期待されます。成果は2025年7月28日付 Chemical Science に掲載。

海洋細菌由来のテルペン合成酵素の機能を解明~原子レベルでの酵素機能を理解し機能の改変を実現~
AsDMSが触媒する連続的な反応と立体構造

<関連情報>

細菌性テルペン環化酵素とハロ酸脱ハロゲン化酵素様リン酸酵素の融合タンパク質の構造的洞察 Structural Insights into a Bacterial Terpene Cyclase Fused with Haloacid Dehalogenase-like Phosphatase

Keisuke Fujiyama, Hiroshi Takagi, Nhu Ngoc Quynh Vo, Naoko Morita, Toshihiko Nogawa  and  Shunji Takahashi
Chemical Science  Published:28 Jul 2025
DOI:https://doi.org/10.1039/D5SC04719F

Abstract

Terpene cyclases (TCs), consisting of various combinations of α, β, and γ domains, have been extensively studied. Recently, non-canonical enzymes comprising a TCβ domain and a haloacid dehalogenase (HAD)-like domain (referred to as HAD-TCβ) have been discovered. However, their overall structure remains unclear. In this study, we determined the co-crystal structures of drimenol synthase from Aquimarina spongiae (AsDMS), which catalyzes the conversion of farnesyl pyrophosphate (1) into drimenol (2). Crystallographic analyses of the enzyme bound to substrates 1 and drimenyl monophosphate (3) demonstrated that the TCβ domain catalyzes a class II cyclization reaction initiated by protonation, whereas the HAD domain catalyzes a phosphatase-like dephosphorylation reaction dependent on a divalent metal. Crystallographic and gel filtration analyses revealed that AsDMS adopts a dimeric assembly. This dimerization positioned the TCβ and HAD domains to facilitate efficient substrate transfer via electrostatic substrate channeling. Furthermore, to investigate the structure-function relationship of the AsDMS TCβ domain, we used AlphaFold2 to model the structure of the fungal albicanol (4) synthase. Comparative analysis of active-site residues between AsDMS and fungal 4-synthase enabled rational protein engineering, converting AsDMS activity from 2-synthase to 4-synthase. This study provides insights into the biosynthesis of valuable drimane-type sesquiterpenes via targeted mutagenesis.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました