植物分解の新手法を開発(How plants rot: New method decodes hidden decomposers of wood and leaves)

ad

2025-08-28 ゲーテ大学

Web要約 の発言:
フランクフルト大学の研究チームは、木材や落ち葉を分解する生物の酵素を網羅的に探索する新手法「fDOG」を開発した。これは18,000種以上のDNAデータから、機能的に対応するオーソログ遺伝子を同定し、タンパク質ドメイン構造も考慮して精度を高める。解析により、従来は分解者とされていた菌類や細菌に加え、昆虫やダニなど節足動物も植物細胞壁分解酵素を持つ可能性が示された。これらの酵素は水平遺伝子移転で獲得したと考えられ、従来想定されていた腸内細菌依存を超えた能力を持つことが浮上。また、菌類では腐生から寄生への生活様式の変化に伴い分解酵素を失った例も確認された。成果は植物分解者の多様性を再評価し、炭素循環理解に新たな視点を提供する。

<関連情報>

fDOGを用いた特徴構造認識型オルソログ検索が明らかにする、植物細胞壁分解酵素の生命圏における分布 Feature Architecture-Aware Ortholog Search With fDOG Reveals the Distribution of Plant Cell Wall-Degrading Enzymes Across Life

Vinh Tran , Felix Langschied , Hannah Muelbaier , Julian Dosch , Freya Arthen , Miklos Balint , Ingo Ebersberger
Molecular Biology and Evolution  Published:09 June 2025
DOI:https://doi.org/10.1093/molbev/msaf120

植物分解の新手法を開発(How plants rot: New method decodes hidden decomposers of wood and leaves)

Abstract

The decomposition of plant material is a key driver of the global carbon cycle, traditionally attributed to fungi and bacteria. However, some invertebrates also possess orthologs to bacterial or fungal cellulolytic enzymes, likely acquired via horizontal gene transfer. This reticulated mode of evolution necessitates ortholog searches in large taxon sets to comprehensively map the repertoire of plant cell wall-degrading enzymes (PCDs) across the tree of life, a task surpassing capacities of current software. Here, we use fDOG, a novel profile-based ortholog search tool to trace 235 potential PCDs across more than 18,000 taxa. fDOG allows to start the ortholog search from a single protein sequence as a seed, it performs on par with state-of-the-art software that require the comparison of entire proteomes, and it is unique in routinely scoring protein feature architecture differences between the seed protein and its orthologs. Visualizing the presence–absence patterns of PCD orthologs using a Uniform Manifold Approximation and Projection highlights taxa where recent changes in the enzyme repertoire indicate a change in lifestyle. Three invertebrates have a particularly rich set of PCD orthologs encoded in their genome. Only few of the orthologs show differing protein feature architectures relative to the seed that suggest functional modifications. Thus, the corresponding species represent lineages within the invertebrates that may contribute to the global carbon cycle. This study shows how fDOG can be used to create a multi-scale view on the taxonomic distribution of a metabolic capacity that ranges from tree of life-wide surveys to individual feature architecture changes within a species.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました