極限環境下で自己集合するタンパク質断片を設計(Protein Fragments that Self-Assemble under Extreme Conditions)

ad

2026-02-05 デラウェア大学

米国デラウェア大学の研究チームは、自己集合するタンパク質断片を用いた次世代材料設計の新手法を開発した。研究では、天然タンパク質を小さな断片に分解し、それらが自発的に再集合して安定したナノ〜マイクロ構造体を形成する仕組みを解明した。この自己集合過程は分子配列によって精密に制御でき、強度や柔軟性、機能性を目的に応じて設計可能であることが示された。得られた材料は、生体適合性や再生可能性に優れ、医療用材料、環境配慮型プラスチック、エネルギー関連材料など幅広い応用が期待される。本研究は、生物由来分子を基盤とした持続可能な材料開発に新たな道を開く成果である。

<関連情報>

pH応答性液晶または格子への集合のためのパッチ状ペプチド粒子 Patchy peptide particles for pH-responsive assembly into liquid crystals or lattices

Yao Tang, Tianren Zhang, Dai-Bei Yang, Jacob Schwartz, […] , and Darrin J. Pochan
Science  Published:5 Feb 2026
DOI:https://doi.org/10.1126/science.adz6812

Editor’s summary

The self-assembly of polymers, peptides, and other elongated molecules is influenced by factors including charge, polarity, stiffness, and solvent interactions. Introducing charges in materials, for example, can lead to a wide range of often unpredictable outcomes ranging from coacervation to precipitation to liquid crystal formation. Tang et al. used a combination of experimental techniques and molecular dynamics simulations to investigate peptide bundlemers. They designed molecules with charges placed such that they self-assemble into end-to-end linked chains. At extremes of pH (either 1 or 14), the researchers observed liquid crystalline phases, whereas at neutral pH, lattice ordering emerged. Different variants were designed to clarify the roles of charge patches, charge density, and steric effects on liquid crystal assembly and structure. —Marc S. Lavine

Abstract

Programmable control of protein or colloidal nanoparticle self-assembly into targeted nanostructures, while maintaining stability across extreme pH conditions, remains a major challenge. We designed coiled-coil bundlemer peptide nanoparticles that form ordered, hierarchical materials across an unusually broad pH range (1, 7, and 14) dependent on patchy surface charge display. Nematic liquid crystal formation was observed at low concentration (~0.5 to 4 weight %) at pH 1 and pH 14, whereas higher concentration at pH 1 yielded hexagonal columnar phases. At neutral pH, the same patchy nanoparticles assembled into ordered lattices through electrostatic complexation. Molecular dynamics simulations revealed end-to-end particle stacking underlying all phases. Coiled coils with identical amino acid composition but lacking designed charge patches displayed no ordered assembly, demonstrating the importance of programmable electrostatic interactions with protein-like specificity of spatial display.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました