細胞遺伝子工学

最も詳細な解像度でゲノムDNAの3次元構造を導く技術 細胞遺伝子工学

最も詳細な解像度でゲノムDNAの3次元構造を導く技術

細胞内のゲノムDNAの3次元構造を、ヌクレオソームのレベルで決定する技術の詳細な実験マニュアルを公開した。
RNAのたった1ヵ所のメチル化修飾が たんぱく質におけるアミノ酸配列の多様性を生み出す 細胞遺伝子工学

RNAのたった1ヵ所のメチル化修飾が たんぱく質におけるアミノ酸配列の多様性を生み出す

スプライソソームとmRNA前駆体の相互作用において、U6 snRNAのm6A修飾が特定の塩基配列を持つイントロンとの結合を安定化することで、スプライシングの効率を上げる仕組みを見いだした。
国立遺伝学研究所が取り組む新型コロナウイルス・全ゲノム解析の紹介 医療・健康

国立遺伝学研究所が取り組む新型コロナウイルス・全ゲノム解析の紹介

新型コロナウイルス(SARS-CoV-2)の全ゲノム解析による分子疫学調査(SARS-CoV-2 RNA全ゲノム解析)を静岡県と連携・協働して進めている。感染拡大にともないウイルスゲノムには様々な変異が入る。変異パターンを解析することで、感染ルートの解明など感染症対策に大きく貢献できると考えている。
ad
光合成するウミウシ、チドリミドリガイのゲノム情報を解読 細胞遺伝子工学

光合成するウミウシ、チドリミドリガイのゲノム情報を解読

代表的な盗葉緑体ウミウシであるチドリミドリガイ高精度なゲノム解読に成功した。コノハミドリガイのゲノム解読にも成功した。
36.6万人規模の大規模ゲノムコホートを構築~個別化医療・個別化予防の早期実現に向けて国内6研究機関が連携~ 細胞遺伝子工学

36.6万人規模の大規模ゲノムコホートを構築~個別化医療・個別化予防の早期実現に向けて国内6研究機関が連携~

国内6研究機関は各コホート研究で収集した情報を相互利用するための包括的な共同研究の枠組み(国内ゲノムコホート連携)を構築した。
少量のDNAから実施できる長いDNAの全ゲノムメチル化解析法を開発 細胞遺伝子工学

少量のDNAから実施できる長いDNAの全ゲノムメチル化解析法を開発

これまでの長いDNAのメチル化解析手法では、1マイクログラム程度のDNAが必要でしたが、1/100の量(10ナノグラム)のDNAから実施できる方法を開発した。DNA上の場所のメチル化解析に成功した。
数ヶ月を2週間に!迅速・簡便な新型コロナウイルス人工合成技術を開発 細胞遺伝子工学

数ヶ月を2週間に!迅速・簡便な新型コロナウイルス人工合成技術を開発

PCR法を活用した感染性ウイルスの作出技術「CPER法」を用いて、新型コロナウイルスの人工合成に成功。これまでのコロナウイルスの人工合成は、複雑な遺伝子操作技術と作製に数ヶ月間を要するという問題があったが、本方法ではわずか2週間で新型コロナウイルスを作製可能。
”誕生日タグづけ”マウスの脳画像データベース「NeuroGT」を公開 細胞遺伝子工学

”誕生日タグづけ”マウスの脳画像データベース「NeuroGT」を公開

マウスにおいて神経細胞の発生タイミング(神経細胞の「誕生日」)の違いを利用して細胞特異的に遺伝子組換えを誘導する「誕生日タグづけ法」を開発した。神経細胞の分類と分類した細胞の実験操作が可能になった。
もやもや病のリスク遺伝子RNF213の遺伝的特徴と拡散経路の推定 医療・健康

もやもや病のリスク遺伝子RNF213の遺伝的特徴と拡散経路の推定

もやもや病のリスク遺伝子RNF213の配列を日本人患者で集団遺伝学的に解析し、本疾患に見られる多様な病態はRNF213の変異だけでなく環境要因の影響を受けている可能性がある。
国立遺伝学研究所が取り組む新型コロナウイルス・全ゲノム解析の紹介 細胞遺伝子工学

国立遺伝学研究所が取り組む新型コロナウイルス・全ゲノム解析の紹介

新型コロナウイルス(SARS-CoV-2)の全ゲノム解析による分子疫学調査(SARS-CoV-2 RNA全ゲノム解析)を静岡県と連携・協働して進めている。感染拡大にともないウイルスゲノムには様々な変異が入る。変異パターンを解析することで、感染ルートの解明など感染症対策に大きく貢献できると考えてる。
試験管内で染色体を作る~トポイソメラーゼⅡαが密な環境で働く仕組みを解明~ 細胞遺伝子工学

試験管内で染色体を作る~トポイソメラーゼⅡαが密な環境で働く仕組みを解明~

独自に開発した試験管内解析法を駆使し、主要な染色体構成タンパク質であるトポイソメラーゼⅡα(トポⅡα)の機能を明らかにすることに成功した。
遺伝子の転写制御に関わるRNAのマイクロ秒構造変化~最新の1分子蛍光計測法で観測~ 細胞遺伝子工学

遺伝子の転写制御に関わるRNAのマイクロ秒構造変化~最新の1分子蛍光計測法で観測~

最新の1分子蛍光計測法を応用して、遺伝子の発現を制御するRNAが小分子(リガンド)と結合して非常に速く構造変化する様子を観測することに成功した。
ad
タイトルとURLをコピーしました