新しいSPARXS技術は、前例のない速度でDNAの挙動を明らかにする(New SPARXS technique reveals DNA behaviour at unprecedented speed)

ad

2024-08-22 オランダ・デルフト工科大学(TUDelft)

新しいSPARXS技術は、前例のない速度でDNAの挙動を明らかにする(New SPARXS technique reveals DNA behaviour at unprecedented speed)Illustration of the sequencer that reads out millions of DNA codes simultaneously.

デルフト工科大学とライデン大学の生物物理学者たちは、DNA分子を高速で解析できる技術「SPARXS」を開発しました。従来は一つ一つのDNA分子を測定するのに時間がかかりましたが、この技術を使えば、数百万のDNA分子を数日から1週間で解析可能です。SPARXSは、単一分子蛍光技術と次世代シーケンシング技術を組み合わせたもので、DNAの構造と機能に関する新たな洞察を提供し、医療やバイオテクノロジーの分野での進展が期待されます。

<関連情報>

配列空間にわたる1分子の構造および動力学的研究 Single-molecule structural and kinetic studies across sequence space

Ivo Severins, Carolien Bastiaanssen, Sung Hyun Kim, Roy B. Simons, […], and Chirlmin Joo
Science  Published:22 Aug 2024
DOI:https://doi.org/10.1126/science.adn5968

Editor’s summary

Single-molecule techniques are powerful for studying complex dynamics but usually examine only a few samples at a time. A comprehensive understanding of biological processes often requires the study of a large sequence or chemical space. Two groups of investigators have now combined single-molecule fluorescence microscopy with next-generation sequencing, allowing for highly multiplexed observations of the dynamics of millions of individual molecules covering thousands of distinct samples. Rivera et al. used a method dubbed MUSCLE (for “multiplexed single-molecule characterization at the library scale”) to study interactions between Cas9 and target DNAs, exploring a large sequence space to identify a number of target sequences with unexpected behaviors. Severins et al. applied their method, called SPARXS (for “single-molecule parallel analysis for rapid exploration of sequence space”), to analyze a key DNA structure in homologous recombination, revealing sequence-dependent dynamics that were captured in a comprehensive thermodynamic model. —Di Jiang

Abstract

At the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We introduce high-throughput Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS), integrating single-molecule fluorescence with next-generation sequencing. We applied SPARXS to study the sequence-dependent kinetics of the Holliday junction, a critical intermediate in homologous recombination. By examining the dynamics of millions of Holliday junctions, covering thousands of distinct sequences, we demonstrated the ability of SPARXS to uncover sequence patterns, evaluate sequence motifs, and construct thermodynamic models. SPARXS emerges as a versatile tool for untangling the mechanisms that underlie sequence-specific processes at the molecular scale.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました