野生ミツバチのストレス要因を遺伝的シグネチャーで解析 (Analyzing Genetic ‘Signatures’ May Give Insight into What Stresses Wild Bees)

ad

2025-03-10 ペンシルベニア州立大学(PennState)

ペンシルバニア州立大学の研究チームは、新たな手法「ランドスケープ・トランスクリプトミクス」を用いて、野生のマルハナバチが直面するストレス要因を特定することに成功しました。 この手法では、マルハナバチの遺伝子発現パターンを機械学習モデルで解析し、過度の高温や低温などの特定のストレス要因に対応する遺伝子の特徴的な発現パターンを特定しました。この研究は、マルハナバチの保全活動を加速し、全世界的なハチの減少の原因解明に寄与する可能性があります。

<関連情報>

マルハナバチ保護のための多様なストレス因子の転写シグネチャーの活用 Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation

Gabriela M. Quinlan, Heather M. Hines, Christina M. Grozinger
Molecular Ecology  Published: 13 December 2024
DOI:https://doi.org/10.1111/mec.17626

野生ミツバチのストレス要因を遺伝的シグネチャーで解析 (Analyzing Genetic ‘Signatures’ May Give Insight into What Stresses Wild Bees)

ABSTRACT

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short-term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue-specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild-caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave’s peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long-term monitoring of chronic, landscape-level stressors. We highlight future directions to fine-tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました