サル痘ウイルスのI7Lプロテアーゼの結晶構造と阻害剤設計(Researchers Determine First Crystal Structure of MPXV I7L Protease Followed by First-in-Class Inhibitor Design)

ad

2025-04-11 中国科学院(CAS)

中国科学院上海薬物研究所と武漢ウイルス研究所の研究チームは、サル痘ウイルス(MPXV)の主要酵素I7Lプロテアーゼの高解像度結晶構造を初めて解明しました。この酵素はウイルス成熟に必須で、研究では活性部位近くに可動性の「キャップ領域」が存在し、基質へのアクセスを制御することが判明。AlphaFold3やQM/MM計算により基質認識の詳細も解明されました。また、強力な阻害剤(IC₅₀=69 nM)を設計し、FRETアッセイで活性を評価。ウイルス複製の抑制効果(EC₅₀=6.0 μM)も確認され、広範なオルソポックスウイルスに有効な新規抗ウイルス薬開発への道を拓く成果です。

<関連情報>

サル痘ウイルスI7Lプロテアーゼのダイナミックなキャップによる基質アクセスと強力な阻害剤の設計 Dynamic Cap-Mediated Substrate Access and Potent Inhibitor Design of Monkeypox Virus I7L Protease

Haixia Su, Guoqing Wu, Muya Xiong, Yuhang Wang, Junyuan Cao, Mengyuan You, Yingchun Xiang, Tianqing Nie, Minjun Li, Gengfu Xiao, Leike Zhang, Qiang Shao, Yechun Xu
Advanced Science  Published: 07 April 2025
DOI:https://doi.org/10.1002/advs.202501625

サル痘ウイルスのI7Lプロテアーゼの結晶構造と阻害剤設計(Researchers Determine First Crystal Structure of MPXV I7L Protease Followed by First-in-Class Inhibitor Design)

Abstract

Monkeypox virus (MPXV), an orthopoxvirus that has long been endemic in Africa, has posed a significant global health threat since 2022. The I7L protease, a highly conserved cysteine proteinase essential for orthopoxvirus replication, represents a promising target for broad-spectrum antiviral drug development. Here, the first crystal structure of MPXV I7L protease is reported, revealing its unique dimeric form and different conformations of a cap region nearby the active site. Molecular dynamics simulations and AlphaFold3 prediction of protease-substrate structures both suggest that this highly flexible cap acts as a conformational switch, regulating the substrate access to the active site. Additionally, the structural basis of substrate recognition and the catalytic mechanism of the protease are elucidated, mapping determinants of substrate specificity. These insights enable us to design covalent inhibitors to mimic the natural substrates and develop a fluorescence resonance energy transfer (FRET)-based protease assay to effectively assess the inhibitory activity, leading to the discovery of first-in-class inhibitors of MPXV I7L protease with nanomolar potency. Therefore, this work provides a comprehensive understanding of the MPXV I7L protease’s structure, dynamics, and function, and presents an example of successful rational design of covalent peptidomimetic inhibitors, serving as a good starting point for drug development against MPXV.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました