家庭で心不全を早期発見するAIシステムを開発 ~心不全重症度の新たな指標を構築~

ad

2025-04-25 東京大学

東京大学大学院医学系研究科先進循環器病学の研究グループは、SIMPLEX QUANTUM株式会社と共同で、家庭で心不全を早期に発見するAIシステムを開発しました。このシステムは、スマートウォッチなどの携帯型心電計で取得した単一誘導心電図データを用いて、心不全の重症度を高精度(91.6%)で分類することが可能です。さらに、AIによって心不全の重症度を数値化する独自の「HFインデックス」を開発し、心不全の進行をリアルタイムで評価できる新たな指標を確立しました。この技術により、患者は自宅で簡便に心不全の状態をモニタリングでき、再入院のリスク低減や早期の治療介入が期待されます。本研究成果は、2025年4月24日に国際的な学術誌「International Journal of Cardiology」に掲載されました。

家庭で心不全を早期発見するAIシステムを開発 ~心不全重症度の新たな指標を構築~
<関連情報>

自宅での単一誘導心電図による心不全モニタリング Heart failure monitoring with a single‑lead electrocardiogram at home

Eriko Hasumi ∙ Katsuhito Fujiu ∙ Ying Chen ∙ … ∙ Hiroshi Akazawa ∙ Morio Shoda ∙ Issei Komuro
International Journal of Cardiology  Published: April 24, 2025
DOI:https://doi.org/10.1016/j.ijcard.2025.133203

Highlights

  • We developed an AI-based HF detection system using single‑lead ECGs recorded at home.
  • Our CNN model calculated an HF-index from the estimated NYHA grades as an indicator of HF severity.
  • We constructed an at-home HF monitoring system enabling early detection and treatment in HF.
  • AI analyzes ECGs from portable devices to detect HF early, enabling swift medical attendance.

Abstract

Background

Repeated hospitalization due to heart failure (HF) is a significant predictor of mortality. However, there are limited early detection systems for HF progression that can be utilized by patients at home without a cardiac implantable electrical device (CIED). This study aimed to develop an artificial intelligence (AI)-based system utilizing convolutional neural network (CNN) algorithms for the early detection of HF progression using single‑lead electrocardiograms (ECGs), including those obtained from wearable devices such as the Apple Watch®.

Methods

ECG data from 9518 participants, encompassing both HF patients and healthy controls, were used to train the CNN model to diagnose HF status. New York Heart Association (NYHA) classifications were determined by multiple cardiologists at the time of ECG recording. The CNN model was designed to calculate a novel HF-index, derived from the NYHA grades predicted by the AI, as a quantitative measure of real-time HF severity.

Results

The CNN model achieved a 91.6 % accuracy in classifying HF severity into NYHA I–II (asymptomatic to mild HF) and NYHA III–IV grades (moderate to severe HF) categories. Furthermore, the model generated a novel HF-index as a real-time indicator of HF severity, which showed a positive correlation (R = 0.74) with plasma B-type natriuretic peptide (BNP) levels, thereby validating its effectiveness in reflecting HF severity.

Conclusions

We successfully constructed a novel at-home HF monitoring system utilizing a portable single‑lead ECG device. This system has been validated for its effectiveness in at-home HF monitoring, representing a significant advancement in remote healthcare for HF management.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました