微生物がニッケルの必要性を減らすことが可能であることを発見(Microbes can reduce their need for nickel)

ad

2025-07-02 マックス・プランク研究所(MPI)

微生物がニッケルの必要性を減らすことが可能であることを発見(Microbes can reduce their need for nickel)Methanogenic archaea have a major impact on the global climate, as they produce almost all naturally occurring methane. They are usually cultivated and studied under nutrient-rich conditions, especially at high nickel concentrations. A research team led by Dr Seigo Shima at the Max Planck Institute for Terrestrial Microbiology has now investigated methanogenesis under nutrient-poor conditions and discovered a strategy that microbes can use to reduce their nickel requirements. © MPI f. terrestrische Mikrobiologie/ Nomura&Geisel

マックス・プランク研究所の研究チームは、メタン生成古細菌がニッケルを使わずに代謝できる新たな酵素系を発見した。通常はニッケル依存の[NiFe]-水素化酵素が必要とされるが、自然界の低ニッケル環境では、電子分岐(FBEB)を利用した代替経路に切り替えることで、水素代謝とメタン生成を維持できることが判明。これは微生物の金属資源への適応能力を示すもので、気候変動予測やバイオリアクター設計にも応用が期待される。

<関連情報>

ニッケル制限下における水素栄養メタン菌の電子の流れ Electron flow in hydrogenotrophic methanogens under nickel limitation

Shunsuke Nomura,Pablo San Segundo-Acosta,Evgenii Protasov,Masanori Kaneko,Jörg Kahnt,Bonnie J. Murphy & Seigo Shima
Nature  Published:02 July 2025
DOI:https://doi.org/10.1038/s41586-025-09229-y

Abstract

Methanogenic archaea are the main producers of the potent greenhouse gas methane1,2. In the methanogenic pathway from CO2 and H2 studied under laboratory conditions, low-potential electrons for CO2 reduction are generated by a flavin-based electron-bifurcation reaction catalysed by heterodisulfide reductase (Hdr) complexed with the associated [NiFe]-hydrogenase (Mvh)3,4,5. F420-reducing [NiFe]-hydrogenase (Frh) provides electrons to the methanogenic pathway through the electron carrier F420 (ref. 6). Here we report that under strictly nickel-limited conditions, in which the nickel concentration is similar to those often observed in natural habitats7,8,9,10,11, the production of both [NiFe]-hydrogenases in Methanothermobacter marburgensis is strongly downregulated. The Frh reaction is substituted by a coupled reaction with [Fe]-hydrogenase (Hmd), and the role of Mvh is taken over by F420-dependent electron-donating proteins (Elp). Thus, Hmd provides all electrons for the reducing metabolism under these nickel-limited conditions. Biochemical and structural characterization of Elp–Hdr complexes confirms the electronic interaction between Elp and Hdr. The conservation of the genes encoding Elp and Hmd in CO2-reducing hydrogenotrophic methanogens suggests that the Hmd system is an alternative pathway for electron flow in CO2-reducing hydrogenotrophic methanogens under nickel-limited conditions.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました