高性能ウイルス濾過のための知能的プロセス解析に機械学習を活用(Machine Learning Modeling Assists Intelligent Process Analysis for High-performance Virus Filtration)

ad

2025-06-18 中国科学院 (CAS)

高性能ウイルス濾過のための知能的プロセス解析に機械学習を活用(Machine Learning Modeling Assists Intelligent Process Analysis for High-performance Virus Filtration)Schematic of machine learning-assisted process analysis and performance prediction (Image by SU Xinwei)

中国科学院プロセス工学研究所の万銀華教授らの研究チームは、バイオ医薬品のウイルス除去プロセス最適化のため、機械学習(ML)モデルを活用した新たな解析手法を開発しました。900件以上の文献データからウイルス除去に関するデータベースを構築し、ウイルス保持率に影響する膜の種類、流量、タンパク質濃度などの複雑な因子の相互作用を解析。特徴量重要度やPDP(部分依存プロット)により、主要変数の独立・相互作用を可視化し、工程最適化に活用。予測結果は実験値とも一致し、スケーラブルなプロセス開発を支援する高い工学的価値を示しました。データ駆動型アプローチにより、従来の試行錯誤的実験依存を軽減します。

<関連情報>

高性能ウイルスろ過のための機械学習モデリング支援インテリジェントプロセス解析 Machine learning modeling assisted intelligent process analysis for high – performance virus filtration

Xinwei Su, Hao Zhang, Tuanfeng Ma, Jianquan Luo, Shicheng Bi, Chunlei Zhou, Rong Fan, Yinhua Wan
Journal of Membrane Science  Available online: 27 May 2025
DOI:https://doi.org/10.1016/j.memsci.2025.124266

Highlights

  • Machine learning model for the intelligent analysis of virus filtration process.
  • Establishment of a database regarding virus filtration for ML modeling.
  • Membrane type is the most important variable in the virus filtration process.
  • Univariate PDP analyzed the effects of variables on virus retention.
  • Increasing flux can minimize negative interactions on virus retention.

Abstract

Therapeutic proteins are a cornerstone of modern medicine, offering targeted and effective clinical treatments. However, potential viral contamination is a crucial threat to the quality and safety of these products. Membrane technology is regarded as a reliable method for viral clearance, but its performance is influenced by a complex interplay of membrane/feed properties and operating parameters. Conventional experimental approaches to identify key factors governing virus breakthrough are often labor-intensive and time-consuming, limiting their utility for efficient process development. Therefore, we developed a machine learning (ML) workflow to unravel key factors, based on a database regarding the membrane processes for virus removal with high-quality data collected from previous publications. The models were trained and tested with 368 data involving eight input variables (membrane type, flux, volumetric throughput, protein concentration, ionic strength, virus concentration, virus type, pH value) and one output variable (log reduction value, LRV). Random Forest was the best-performing model according to its fitness and accuracy. Feature importance analysis revealed the relative importance of the input variables, ranked from highest to lowest as follows: membrane type > flux > volumetric throughput > protein concentration > ionic strength > virus concentration > virus type > pH value. Univariate partial dependence plot (PDP) was used to analyze the individual impact of each variable on LRV, while bivariate PDP revealed synergistic effects, particularly emphasizing the role of increased flux in mitigating adverse interactions. The reliability of the trained models was validated through virus clearance experiments at the model prediction. This study clarified the interactive impacts of critical process parameters on virus retention using ML modeling and provided a pathway for intelligently intensifying multi-factorial biopharmaceutical processes integrated with ML.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました