mRNA治療の開発を加速するAIツール(New AI Tool Accelerates mRNA-Based Treatments for Viruses, Cancers, Genetic Disorders)

ad

2025-07-25 テキサス大学オースチン校(UT Austin)

テキサス大学オースティン校とサノフィの研究チームが、mRNAからのタンパク質合成効率を高精度に予測するAIモデル「RiboNN」を開発した。10,000以上のデータに基づく学習により、従来の約2倍の精度を実現。臓器や細胞タイプに応じたmRNA治療設計が可能となり、がん、ウイルス、遺伝性疾患などに対する個別化医療の加速が期待される。本成果は『Nature Biotechnology』に掲載された。

mRNA治療の開発を加速するAIツール(New AI Tool Accelerates mRNA-Based Treatments for Viruses, Cancers, Genetic Disorders)

<関連情報>

哺乳類細胞におけるメッセンジャーRNAの翻訳効率の予測 Predicting the translation efficiency of messenger RNA in mammalian cells

Dinghai Zheng,Logan Persyn,Jun Wang,Yue Liu,Fernando Ulloa-Montoya,Can Cenik & Vikram Agarwal
Nature Biotechnology  Published:25 July 2025
DOI:https://doi.org/10.1038/s41587-025-02712-x

Abstract

The mechanisms by which mRNA sequences specify translational control remain poorly understood in mammalian cells. Here we generate a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing more than 140 human and mouse cell types from 3,819 ribosomal profiling datasets. We develop RiboNN, a state-of-the-art multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features. While most earlier models solely considered the 5′ untranslated region (UTR) sequence, RiboNN integrates how the spatial positioning of low-level dinucleotide and trinucleotide features (that is, including codons) influences TE, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN predicts the translational behavior of base-modified therapeutic RNA and explains evolutionary selection pressures in human 5′ UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability and localization in mammalian organisms.

 

翻訳効率の共変量は、細胞タイプを超えて保存された協調パターンを同定する Translation efficiency covariation identifies conserved coordination patterns across cell types

Yue Liu,Shilpa Rao,Ian Hoskins,Michael Geng,Qiuxia Zhao,Jonathan Chacko,Vighnesh Ghatpande,Kangsheng Qi,Logan Persyn,Jun Wang,Dinghai Zheng,Yochen Zhong,Dayea Park,Elif Sarinay Cenik,Vikram Agarwal,Hakan Ozadam & Can Cenik
Nature Biotechnology  Published:25 July 2025
DOI:https://doi.org/10.1038/s41587-025-02718-5

Abstract

Characterizing shared patterns of RNA expression between genes across conditions has led to the discovery of regulatory networks and biological functions. However, it is unclear if such coordination extends to translation. In this study, we uniformly analyze 3,819 ribosome profiling datasets from 117 human and 94 mouse tissues and cell lines. We introduce the concept of translation efficiency covariation (TEC), identifying coordinated translation patterns across cell types. We nominate candidate mechanisms driving shared patterns of translation regulation. TEC is conserved across human and mouse cells and uncovers gene functions that are not evident from RNA or protein co-expression. Moreover, our observations indicate that proteins that physically interact are highly enriched for positive covariation at both translational and transcriptional levels. Our findings establish TEC as a conserved organizing principle of mammalian transcriptomes. TEC has potential as a predictive marker for gene function and may offer a framework for designing gene expression systems in synthetic biology and biotechnological applications.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました