生細胞で量子ビットを自然生成、量子技術に新展開(Scientists program cells to create ‘biological qubit’ in quantum breakthrough)

ad

2025-08-25 シカゴ大学 (UChicago)

シカゴ大学Pritzker School of Molecular Engineeringの研究チームは、細胞が自然に生成するタンパク質を利用して「生物学的量子ビット(biological qubit)」を実現しました。従来の量子技術は極低温や特殊環境を必要としますが、この方法は生体内で安定して機能し、人工材料より効率的に構築可能です。新たに開発されたタンパク質qubitは既存の量子センサーより数千倍強い信号を検出でき、ナノスケールMRIなどへの応用が期待されます。これにより細胞機械の原子レベル構造を直接観察できる可能性が開かれ、量子物理学と生物学を結びつける革新的な成果と位置付けられます。成果は Nature に掲載されました。

<関連情報>

蛍光タンパク質スピン量子ビット A fluorescent-protein spin qubit

Jacob S. Feder,Benjamin S. Soloway,Shreya Verma,Zhi Z. Geng,Shihao Wang,Bethel B. Kifle,Emmeline G. Riendeau,Yeghishe Tsaturyan,Leah R. Weiss,Mouzhe Xie,Jun Huang,Aaron Esser-Kahn,Laura Gagliardi,David D. Awschalom & Peter C. Maurer
Nature  Published:20 August 2025
DOI:https://doi.org/10.1038/s41586-025-09417-w

生細胞で量子ビットを自然生成、量子技術に新展開(Scientists program cells to create ‘biological qubit’ in quantum breakthrough)

Abstract

Quantum bits (qubits) are two-level quantum systems that support initialization, readout and coherent control1. Optically addressable spin qubits form the foundation of an emerging generation of nanoscale sensors2,3,4,5,6,7. The engineering of these qubits has mainly focused on solid-state systems. However, fluorescent proteins, rather than exogenous fluorescent probes, have become the gold standard for in vivo microscopy because of their genetic encodability8,9. Although fluorescent proteins possess a metastable triplet state10, they have not been investigated as qubits. Here we realize an optically addressable spin qubit in enhanced yellow fluorescent protein. A near-infrared laser pulse enables triggered readout of the triplet state with up to 20% spin contrast. Using coherent microwave control of the enhanced-yellow-fluorescent-protein spin at liquid-nitrogen temperatures, we measure a (16 ± 2) μs coherence time under Carr–Purcell–Meiboom–Gill decoupling. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically detected magnetic resonance in bacterial cells at room temperature with contrast up to 8%. Our results introduce fluorescent proteins as a powerful qubit platform that paves the way for applications in the life sciences, such as nanoscale field sensing and spin-based imaging modalities.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました