1細胞RNAデータから細胞種とサブタイプを同定する階層的深層学習~新しいアーキテクチャscHDeepInsight法を開発~

ad

2025-10-09 東京大学

東京大学と理化学研究所の研究チームは、1細胞RNA-seqデータから細胞種とサブタイプを高精度に同定できる新しい階層的深層学習手法 scHDeepInsight を開発した。従来法では細胞分類の階層性(種とサブタイプ)を考慮できず精度に限界があったが、本手法は非画像データをDeepInsight法で画像化し、CNNによる特徴抽出と階層構造を統合的に学習。これにより平均93.2%の精度を達成し、未知の細胞種の検出も可能となった。免疫細胞を中心に学習されているが、がんや慢性疾患など多様な組織解析にも適用可能で、生体内の精緻な細胞制御メカニズム解明に寄与する。成果は『Briefings in Bioinformatics』誌に掲載。

1細胞RNAデータから細胞種とサブタイプを同定する階層的深層学習~新しいアーキテクチャscHDeepInsight法を開発~
提案手法scHDeepInsightの概略図

<関連情報>

scHDeepInsight: 単一細胞RNA-seqデータにおける正確な免疫細胞アノテーションのための階層型ディープラーニングフレームワーク scHDeepInsight: a hierarchical deep learning framework for precise immune cell annotation in single-cell RNA-seq data

Shangru Jia, Artem Lysenko, Keith A Boroevich, Alok Sharma, Tatsuhiko Tsunoda
Briefings in Bioinformatics  Published:09 October 2025
DOI:https://doi.org/10.1093/bib/bbaf523

Abstract

Accurate classification of immune cells is crucial for elucidating their diverse roles in health and disease. However, this task remains very challenging in single-cell RNA sequencing (scRNA-seq) data due to the complex and hierarchical relationships of immune cell types. To address this, we introduce scHDeepInsight, a deep learning framework that extends our previous scDeepInsight model by integrating a biologically-informed classification architecture with an adaptive hierarchical focal loss (AHFL). The framework builds on our established method of converting gene expression data into two-dimensional structured images, enabling convolutional neural networks to effectively capture both global and fine-grained transcriptomic features. This design utilizes hierarchical relationships among immune cell types to enhance the classification ability beyond the flat classification approaches. scHDeepInsight dynamically adjusts loss contributions to balance performance across the hierarchy levels. Comprehensive benchmarking across seven diverse tissue datasets shows scHDeepInsight achieves an average accuracy of 93.2%, surpassing contemporary methods by 5.1 percentage points. The model successfully distinguishes 50 distinct immune cell subtypes with high accuracy, demonstrating proficiency for identifying rare and closely related cell subtypes. Additionally, SHAP-based interpretability quantifies individual gene contributions to reveal the biological basis of classification decisions. These qualities make scHDeepInsight a robust tool for high-resolution cell subtype characterization, well-suited for detailed profiling in immunological studies and extensible to nonimmune cell types.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました