脳波を追跡することで、手術後の合併症を軽減できる可能性を発見(Study finds tracking brain waves could reduce post-op complications)

ad
ad

特徴的な脳波パターンから、全身麻酔下の患者の意識状態が必要以上に深いことがわかる。 Distinctive EEG patterns indicate when a patient’s state of unconsciousness under general anesthesia is more profound than necessary.

2023-07-17 マサチューセッツ工科大学(MIT)

◆MITの研究者たちは、全身麻酔を受ける患者の脳波を分析し、麻酔の深い状態である「バーストサプレッション」に移行する時の脳波の特徴を特定しました。この特徴を利用することで、麻酔医は患者がバーストサプレッションに陥るのを防ぐことができ、術後の脳障害のリスクを減らすことが可能となるかもしれません。
◆研究により、アルファ波の振幅変調やスローやデルタ波の周波数変化がバーストサプレッションに関連していることが明らかになりました。これにより、患者の無意識の状態をより精密にコントロールする手段が提供される可能性があります。

<関連情報>

調節ダイナミクスは、麻酔による無意識状態間の移行を示す。 Modulatory dynamics mark the transition between anesthetic states of unconsciousness

Elie Adam, Ohyoon Kwon, Karla A. Montejo, and Emery N. Brown
Proceedings of the National Academy of Sciences  Published:July 19, 2023
DOI:https://doi.org/10.1073/pnas.2300058120

脳波を追跡することで、手術後の合併症を軽減できる可能性を発見(Study finds tracking brain waves could reduce post-op complications)

Significance

During unconsciousness maintained by GABAergic anesthetics (propofol and sevoflurane), the typical electroencephalogram signatures are slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations (8 to 14 Hz) that at higher doses devolve into burst suppression, a marker of profound brain inactivation. The dynamics of the transition between these states of unconsciousness remain uncharacterized. We report alpha-wave-amplitude and slow-wave-frequency modulatory processes that track continuously the transition between these states in humans anesthetized with either propofol or sevoflurane. Our biophysical model attributes these modulatory dynamics to the combined neurophysiological and metabolic effects of these anesthetics on brain circuits. Our findings offer insights into the mechanisms of these agents and strategies for monitoring and precisely controlling unconsciousness in patients under general anesthesia.

Abstract

Unconsciousness maintained by GABAergic anesthetics, such as propofol and sevoflurane, is characterized by slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations (8 to 14 Hz) that are readily visible in the electroencephalogram. At higher doses, these slow-delta–alpha (SDA) oscillations transition into burst suppression. This is a marker of a state of profound brain inactivation during which isoelectric (flatline) periods alternate with periods of the SDA patterns present at lower doses. While the SDA and burst suppression patterns have been analyzed separately, the transition from one to the other has not. Using state–space methods, we characterize the dynamic evolution of brain activity from SDA to burst suppression and back during unconsciousness maintained with propofol or sevoflurane in volunteer subjects and surgical patients. We uncover two dynamical processes that continuously modulate the SDA oscillations: alpha-wave amplitude and slow-wave frequency modulation. We present an alpha modulation index and a slow modulation index which characterize how these processes track the transition from SDA oscillations to burst suppression and back to SDA oscillations as a function of increasing and decreasing anesthetic doses, respectively. Our biophysical model reveals that these dynamics track the combined evolution of the neurophysiological and metabolic effects of a GABAergic anesthetic on brain circuits. Our characterization of the modulatory dynamics mediated by GABAergic anesthetics offers insights into the mechanisms of these agents and strategies for monitoring and precisely controlling the level of unconsciousness in patients under general anesthesia.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました