半身不随の男性が思考でロボットアームを動かした方法(How a Paralyzed Man Moved a Robotic Arm with His Thoughts)

ad

2025-03-06 カリフォルニア大学サンフランシスコ校(UCSF)

カリフォルニア大学サンフランシスコ校の研究チームは、ブレイン・コンピュータ・インターフェース(BCI)を用いて、四肢麻痺の男性が思考のみでロボットアームを操作できる技術を開発した。脳表面に埋め込んだセンサーが手や指の動きを「想像」する信号を読み取り、AIによって微細な脳活動の変化に適応することで、最大7か月間安定動作を実現。これにより、麻痺患者が自力で食事や物の移動など日常生活動作を行える可能性が広がる。研究成果は『Cell』誌に掲載された。

<関連情報>

単純なイメージ運動の表象可塑性を日単位でサンプリングすることで、長期的な神経補綴制御が可能になる Sampling representational plasticity of simple imagined movements across days enables long-term neuroprosthetic control

Nikhilesh Natraj ∙ Sarah Seko ∙ Reza Abiri ∙ … ∙ Adelyn Tu-Chan ∙ Edward F. Chang ∙ Karunesh Ganguly
Cell  Published:March 06, 2025
DOI:https://doi.org/10.1016/j.cell.2025.02.001

Graphical abstract

半身不随の男性が思考でロボットアームを動かした方法(How a Paralyzed Man Moved a Robotic Arm with His Thoughts)

Highlights

  • e study the stability and plasticity of a repertoire of imagined motor actions
  • Neural representational variance can be flexibility regulated in new BCI contexts
  • Representations remain stable away from closed-loop BCI control
  • We enable long-term BCI control by accounting for across-day plasticity and drift

Summary

The nervous system needs to balance the stability of neural representations with plasticity. It is unclear what the representational stability of simple well-rehearsed actions is, particularly in humans, and their adaptability to new contexts. Using an electrocorticography brain-computer interface (BCI) in tetraplegic participants, we found that the low-dimensional manifold and relative representational distances for a repertoire of simple imagined movements were remarkably stable. The manifold’s absolute location, however, demonstrated constrained day-to-day drift. Strikingly, neural statistics, especially variance, could be flexibly regulated to increase representational distances during BCI control without somatotopic changes. Discernability strengthened with practice and was BCI-specific, demonstrating contextual specificity. Sampling representational plasticity and drift across days subsequently uncovered a meta-representational structure with generalizable decision boundaries for the repertoire; this allowed long-term neuroprosthetic control of a robotic arm and hand for reaching and grasping. Our study offers insights into mesoscale representational statistics that also enable long-term complex neuroprosthetic control.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました