ヒカゲヘゴ科シダ植物の「生きた化石」的生存戦略のゲノム的秘密を解明(Researchers Uncover Genomic Secrets Behind Cyatheaceae Tree Ferns’ Survival as “Living Fossils”)

ad

2025-10-11 中国科学院(CAS)

中国科学院華南植物園の研究チームは、「生きた化石」とされるシダ植物ヒカゲヘゴ科の長期生存の秘密をゲノム解析で解明した。約1億5400万年前に全ゲノム重複(WGD)が起こり、その後の遺伝的適応が大量絶滅を乗り越える鍵となった。木性種は細胞壁形成やリグニン生成遺伝子を保持し、非木性種は代謝・防御遺伝子を保持するなど分化が見られた。また、トランスポゾン活動によるゲノム再構築が形態変化を伴わない進化を促した。研究は「進化的静止」とされてきた概念を覆し、遺伝的可塑性と保守性の動的平衡がヒカゲヘゴの生存を支えてきたことを示した。成果は『Molecular Biology and Evolution』誌に掲載。

<関連情報>

静止と動態のパラドックスの解決:樹木シダにおけるゲノム進化 Resolving the stasis-dynamism paradox: Genome evolution in tree ferns

Zuoying Wei, Hengchi Chen, Chao Feng, Zengqiang Xia, Yves Van de Peer, Ming Kang, Jing Wang
Molecular Biology and Evolution  Published::26 September 2025
DOI:https://doi.org/10.1093/molbev/msaf247

Abstract

The paradox of evolutionary stasis and dynamism—how morphologically static lineages persist through deep geological periods despite environmental fluctuations—remains unresolved in evolutionary biology. Here, we present chromosome-scale genomes for three ecologically divergent species (including both arborescent and non-arborescent growth forms) within Cyatheaceae, an ancient tree fern family characterized by morphological conservation dating back to the Jurassic era. Our results revealed substantial yet cryptically regulated genomic dynamism. A shared Jurassic whole-genome duplication (∼154 Ma) conferred dual adaptive advantages: initially buffering tree ferns against Late Jurassic climatic extremes through retention of stress-response genes, and subsequently facilitating niche diversification and phenotypic innovation via lineage-specific repurposing of duplicate genes. Arborescent lineages preferentially retained duplicates involved in cell wall biogenesis, essential for structural reinforcement and lignification, while non-arborescent forms conserved paralogs linked to metabolic resilience and defense. Alongside slow substitution rates, we detected cryptic genome dynamism mediated primarily by bursts of transposable elements, leading to genome size variations, chromosomal rearrangements, and localized innovation hotspots with elevated evolutionary rates. The concerted expansion and expression of lignification-related genes, coordinated with light signaling components, suggest a potential evolutionary mechanism integrating light perception with shade-adaptation and lignification, facilitating arborescent adaptation in angiosperm-dominated understories. Our findings redefine evolutionary stasis as a dynamic equilibrium, sustained by regulatory plasticity and localized genomic innovation within a conserved morphological framework. This study offers a novel genomic perspective on the long-term persistence and evolution of ancient plant lineages, demonstrating how regulated genomic dynamism enables adaptive diversification while sustaining morphological conservatism.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました