深部組織イメージング用の光感受性分子を開発(Light-Sensitive Molecule Allows Researchers to Visualize and Manipulate Cells in Deep Tissues)

ad

2025-07-31 デューク大学

ChatGPT:
デューク大学らの研究により、光感受性分子「ビリベルジン」の体内濃度を高めることで、近赤外光を用いた深部組織のイメージングと光操作が大幅に向上しました。脳や臓器での非侵襲的な可視化が可能となり、光でインスリンを誘導するなどの応用も実証。3D‑PAULM技術と組み合わせることで、従来困難だった深部生体観察や治療への応用が期待されます。

Mapping the deep-brain blood vessels (shown in blue-green) and neurons (shown in yellow-red) by integrated photoacoustic and ultrasound tomography on a Blvra-/- mouse. Credit: Junjie Yao and Vladislav V. Verkhusha.
Credit: Junjie Yao and Vladislav V. Verkhusha

<関連情報>

ビリベルジン還元酵素ノックアウトにより可能となった深部組織高感度マルチモーダル画像化と光遺伝学的操作 Deep-tissue high-sensitivity multimodal imaging and optogenetic manipulation enabled by biliverdin reductase knockout

Ludmila A. Kasatkina,Chenshuo Ma,Huaxin Sheng,Matthew Lowerison,Luca Menozzi,Mikhail Baloban,Yuqi Tang,Yirui Xu,Lucas Humayun,Tri Vu,Pengfei Song,Junjie Yao & Vladislav V. Verkhusha
Nature Communications  Published:14 July 2025
DOI:https://doi.org/10.1038/s41467-025-61532-4

Abstract

Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra-/-), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra-/- cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra-/- mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra-/- model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました