細胞の運動を制御する「踊るタンパク質」の動態を解明(Dancing proteins keep cells moving)

ad

2025-10-10 マックス・プランク研究所

マックス・プランク分子生理学研究所のステファン・ラウンザー教授らは、細胞運動を支えるアクチン線維の解体機構を原子レベルで解明した。クライオ電子顕微鏡による解析で、コロニン・コフィリン・AIP1の3種タンパク質が協調して線維を切断・再構築する“分子ダンス”を可視化。これにより、細胞骨格の高速な再編成と細胞移動の分子基盤が明らかとなった。これらタンパク質の異常は免疫不全やがん転移に関与するため、研究はアクチン動態を標的とした新規治療法開発にもつながると期待される。

細胞の運動を制御する「踊るタンパク質」の動態を解明(Dancing proteins keep cells moving)Severing of actin filament (from grey to pink) in a multi-step process by the protein trio coronin (first purple, then blue), cofilin (green) and AIP1 (orange).
© MPI f. Molecular Physiology

<関連情報>

コロニン、コフィリン、AIP1による急速なアクチンフィラメント分解の振り付け Choreography of rapid actin filament disassembly by coronin, cofilin, and AIP1

Wout Oosterheert ∙ Micaela Boiero Sanders ∙ Oliver Hofnagel ∙ Peter Bieling, ∙ Stefan Raunser
Cell  Published:October 10, 2025
DOI:https://doi.org/10.1016/j.cell.2025.09.016

Highlights

  • Cryo-EM reveals how coronin, cofilin, and AIP1 synergize to disassemble actin filaments
  • Coronin induces phosphate release from F-actin to promote the rapid binding of cofilin
  • Cofilin binds sequentially to both filament strands and sterically displaces coronin
  • AIP1 severs cofilin-bound actin filaments through a “molecular squeezing” mechanism

Summary

Rapid remodeling of actin filament (F-actin) networks is essential for the movement and morphogenesis of eukaryotic cells. The conserved actin-binding proteins coronin, cofilin, and actin-interacting protein 1 (AIP1) act in synergy to promote rapid F-actin network disassembly, but the underlying mechanisms have remained elusive. Here, using cryo-electron microscopy (cryo-EM), we uncover the concerted molecular actions of coronin, cofilin, and AIP1 that lead to actin filament aging and severing. We find that the cooperative binding of coronin allosterically promotes inorganic phosphate release from F-actin and induces filament undertwisting, thereby priming the filament for cofilin binding. Cofilin then displaces coronin from the filament via a strand-restricted cooperative binding mechanism. The resulting cofilactin serves as a high-affinity platform for AIP1, which induces severing by acting as a clamp that disrupts inter-subunit filament contacts. In this “molecular squeezing” mechanism, AIP1 and not cofilin is responsible for filament severing. Our work redefines the role of key disassembly factors in actin dynamics.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました